Artwork of Jupiter and its largest four (Galilean) moons. From left to right the bodies are Io, Callisto, Jupiter (with the shadow of Io cast upon it), Ganymede and Europa. The bodies are all shown to the correct scale, as viewed from a distance somewhere beyond the orbit of Callisto

1015902840

Artwork of Jupiter and its largest four (Galilean) moons. From left to right the bodies are Io, Callisto, Jupiter (with the shadow of Io cast upon it), Ganymede and Europa. The bodies are all shown to the correct scale, as viewed from a distance somewhere beyond the orbit of Callisto

Photo by: MARK GARLICK/SCIENCE PHOTO LIBRARY

MARK GARLICK/SCIENCE PHOTO LIBRARY

How Did the Solar System Form?

How did our solar system form? It's a pretty simple and straightforward question, but as with most things in science, simple and straightforward doesn't necessarily mean easy.

June 11, 2020

For decades, all we had in the study of our solar system was...the solar system. We got to stare at the planets and moons all night long, and run our computer simulations based on the physics that we know, to try to make a match and be able to tell the story of the past four and a half billion years.

78403168

Photo by: Stocktrek

Stocktrek

Looking Beyond Our Solar System

But more recently, we've come up with a new trick. We can stare at other solar systems! There are other suns with other planets orbiting them, with tiny little moons around those alien planets. We've catalogued thousands upon thousands of planets outside our solar system. And one of the cool parts of observing other planets is that we get to capture solar systems in various stages of their life cycles - young systems, old systems, and everything in between. By looking closely at the youngest solar systems, we can get some clues as to how our very own system form.

Case in point: the moons of the giant planets. If you look at something like Jupiter, you'll typically find a system of large moons. How did they get so big? How did they end up in those orbits? What were all the cool physics that went into the recipe of their formation?

For a long time, we've known the broad strokes of how our entire solar system formed. It started with the collapse of a gas cloud, with most of the material ending up in the center to turn into the sun. Through various interesting complicated (and not very well understood) processes, the remaining material coalesced into the planets. To make the moons, this process repeated itself in miniature for the giant worlds. For example, young proto-Jupiter was surrounded by its own disk of gas and dust that found itself becoming the moon system.

A view of the Andromeda Galaxy, the nearest major spiral galaxy to our own Milky Way.

837105862

A view of the Andromeda Galaxy, the nearest major spiral galaxy to our own Milky Way.

Photo by: Xuanyu Han

Xuanyu Han

But exactly how did this proceed?

New observations of young solar systems, complete with still-forming material around just-born planets, may give us a clue. And that clue has one name: dust.

According to new research, the material around the young Jupiter acted as a dust trap, collecting any wayward material drifting through the baby solar system. This allowed proto-moons to form one by one and then migrate inwards to find a home orbit around their parent planet. Without the dust, it's a little unclear how exactly the moons of the gas giants could form in a short enough amount of time (as our young sun turned on it got hotter, eventually evaporating all the loose material throughout the solar system, shutting off formation).

This new model is bolstered by the observation of a lot more dust than expected around young alien exoplanets – if it is happening over there, right now, it might have happened here, long ago.

Paul M. Sutter

Paul M. Sutter is an astrophysicist at Stony Brook University and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of How to Die in Space.

Next Up

The Perseid Meteor Shower Reaches its Peak

Stargazers rejoice! The annual Perseid meteor shower is upon us. Here's what you need to know...(updated August 11, 2022)

Scientists Have Discovered Enormous Balloon-Like Structures in the Center of Our Galaxy

There's something really, really big in the middle of our Milky Way galaxy — one of the largest structures ever observed in the region, in fact.

Astronomers May Have Found a Rare “Free-Floating” Black Hole

How do you see a perfectly black object in the middle of a pitch-dark night? It sounds like the start of an annoying riddle, but it’s really the question faced by astronomers when they want to search for black holes.

How Do We Know How Old the Sun Is?

Scientists estimate that our Sun is about 4.57 billion years old. They’re surprisingly confident about that number, too, which opens up an immediate question: how do we know that? The short answer is “a lot of science and math”, but I have a feeling you’re not here for the short answer.

Saving Earth from Killer Asteroids

Only about 40% of an estimated 25,000 near-Earth asteroids with the potential to destroy the planet have been detected. Scientist Dr. Ed Lu, along with his nonprofit B612 are working to create a way to detect the other 60%.

Scientists in China Discover Rare Moon Crystal that Could Power Earth

A rare lunar crystal found on the near side of the moon is giving scientists hope of providing limitless power for the world – forever.

How to Save Humanity from Extinction

Here are some goals we need to achieve if we want to reach our 500,000th birthday as a species.

How Do They Make Meat-Like Burgers From Plants?

These new plant-based burgers that are scientifically designed to taste better.

How Much Force Does It Take To Break A Bone?

Contrary to popular belief, bones are not that easy to break.

Here's How Little Exercise It Takes to Boost Your Mental Health

Exercise benefits more than just your physique.

Related To: