Photo by: NASA's Goddard Space Flight Center

NASA's Goddard Space Flight Center

Astronomers See Flashes from Behind a Black Hole

Want to see what’s behind a black hole? Easy. You just…stare at it. The whole thing is pretty weird to contemplate, but an excellent example of the space-bending (and mind-bending) powers of black holes.

August 26, 2021

Typically, you don’t expect to see through a black hole. And truly, you can’t. Every black hole is surrounded by an event horizon, which is the ultimate one-way street. Once something – anything, really, even light itself – crosses the event horizon of a black hole, it can never, ever return back into the surrounding universe. It is quite literally lost to us forever.

So if there’s, say, a galaxy on the far side of a black hole, we won’t get to see it directly. That’s because any light coming from that galaxy and headed in our direction will get swallowed by the black hole, and that’s that.

So imagine the surprise when Stanford astrophysicist Dan Wilkins and collaborators realized that they were seeing light coming from behind a black hole.

They were studying flares of X-rays coming from a supermassive black hole centered in the galaxy known as I Zwicky I. Those flares come from a region around the black hole called the corona. This corona is made of super-heated particles that are either trapped in orbit around the black or on their way down below the event horizon. But before they plunge to their doom, never to be seen again, they become so energized that they emit flashes of X-ray radiation.

This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes.

Photo by: NASA’s Goddard Space Flight Center; ESA/Gaia/DPAC

NASA’s Goddard Space Flight Center; ESA/Gaia/DPAC

This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes.

We see these kinds of X-ray flares all the time. But Wilkins and his collaborators noticed that some of the flares had different wavelengths, and were slightly delayed relative to the normal flashes.

Black hole based lightbulb moment: the X-ray flashes were coming from the part of the corona behind the black hole.

But if they were emitted behind the black hole, and headed away from us, how did those X-ray signals make it to Earth?

It’s gravity. A lot of gravity.

Photo by: NASA

NASA

All gravitating objects can bend the path of light. Our sun does it just a tiny bit, and it was observations of that small deflection of light that first validated Einstein’s theory of general relativity. Since then, astronomers have observed this deflection of light around throughout the universe.

But this is the first time that the bending of light has taken on such an extreme character. We’re talking about a complete 180-degree reversal. A beam of X-rays was so deflected by the presence of the black hole that it went in the exact opposite direction that it intended.

Like I said, extreme.

Dive Deeper into the Cosmos

Journey Through the Cosmos in an All-New Season of How the Universe Works

The new season premieres March 24 on Science Channel and streams on discovery+.

Paul M. Sutter is an astrophysicist at Stony Brook University and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of How to Die in Space.

Next Up

Do You Want to Go to Space?

Have you always dreamed of going to space? Former NASA astronaut Mike Massimino answers our questions about life at the International Space Station.

We Have Liftoff: Congratulations to NASA and SpaceX

Here's to NASA, SpaceX, Astronauts Bob Behnken and Doug Hurley, and all of the engineers, scientists, and staff involved with the Saturday, May 30th historical launch.

Top 5 Reasons Why the “UFO Report” Isn’t Interesting to me, a Scientist

Excited by the prospects of the “UFO Report”? As a scientist, I have my doubts. But you can watch UFOS DECLASSIFED: LIVE on Discovery and Science June 30 at 8P where experts discuss what can and can't be explained.

Get Ready for Puppy Bowl XIX

Puppy Bowl XIX premieres Sunday, February 12 at 2P ET/11A PT with more adoptable puppies from shelters and rescues across the nation.

Catch the Puppy Bowl Official Scrimmage Only on TikTok

Before you stream PUPPY BOWL XVII on discovery+ this Sunday, February 7 at 2PM ET/11AM PT, get a sneak peek at the puppy scrimmage to end all scrimmages. Watch Team Ruff and Team Fluff go head to head LIVE over on @AnimalPlanet's TikTok on Saturday, February 6 at 2PM ET.

There’s a Lot You Don’t Know About Sharks

But in the meantime, here are some fin-tastic facts you probably didn’t know about sharks.

Astronomers May Have Found a Rare “Free-Floating” Black Hole

How do you see a perfectly black object in the middle of a pitch-dark night? It sounds like the start of an annoying riddle, but it’s really the question faced by astronomers when they want to search for black holes.

Want to See a Black Hole’s Magnetic Field? Now’s Your Chance

A couple years ago, the team of astronomers with the Event Horizon Telescope wowed the world by providing our first-ever snapshot of a real-life black hole. Now they’ve done one better and mapped out the swirling magnetic fields around the monster. It’s our first ever glimpse of the forces that power the largest engines in the universe.

What Screaming Black Holes are Telling Us

In 2002, NASA’s orbiting X-ray observatory, the Chandra telescope, mapped out the movements of hot gas in a cluster of galaxies sitting 250 million light-years away.

Watch Out! Amateur Astronomer Watches as Jupiter Gets Whacked

Jupiter is the OG best friend in the solar system. It finds all the tiny little comets and asteroids heading for the vulnerable inner planets and takes one for the team, chewing up the dangerous rocks in its thick atmosphere. It happened again just recently, and this time an amateur astronomer caught it in the act.

Related To: