Photo by: Getty Images

Getty Images

Feathers and Bowling Balls Act Strangely in a Vacuum

You can recreate your own version of this famous experiment.

August 01, 2019

Sometime in the third century B.C., Aristotle wrote that heavy objects fall toward Earth faster than lighter ones. His explanation for this behavior was profoundly influential, sophisticated for its time, and almost completely wrong. Almost 2,000 years later, Galileo proved that heavy objects and light objects fall to Earth at exactly the same rate. You can perform his experiment yourself.

No, This Doesn't Defy Gravity

At first glance, it's easy to side with Aristotle. If you drop a feather and a bowling ball from the same distance anywhere on Earth, they will fall at different rates. The feather will drift breezily to the ground while the bowling ball plunks downward immediately. But this explanation leaves an important factor out of the equation: air resistance. Since the feather is so light, air pressure acting on it from all directions is strong enough to counteract the force of gravity, which acts on it uniformly regardless of its weight.

Galileo proved Aristotle wrong with a simple stroke of genius — he used two cannonballs (bowling wasn't popular in 16th century Italy, but cannons were) and dropped them both off of the Leaning Tower of Pisa. If Aristotle was right, then the smaller cannonball should fall at a slower rate than the larger one. Instead, they both fell at the same exact speed: 9.8 m/s². Galileo's experiment became one of the most important pieces of the puzzle that Isaac Newton would later use to establish the modern theory of gravity.

You can recreate your own version of Galileo's experiment by tying a feather to a bowling ball and dropping them both at the same time. The feather-bowling ball duo doesn't fall at a slower rate because the feather is lighter than just the bowling ball alone — instead, they both fall at exactly the same rate. Similarly, if you pump all of the air out of a glass chamber to create a vacuum, you can drop both the feather and the bowling ball — no strings attached — and watch them hit the ground at the exact same time.

No Vacuum Chamber, No Problem

This experiment doesn't necessarily require a cumbersome vacuum chamber. Apollo 15 astronaut David Scott famously recreated this experiment on the moon in 1971 using a falcon feather and a hammer. Scott, an MIT-educated aeronautics engineer, knew his physics, so the fact that the feather and hammer hit the surface of the moon at the same time was no surprise. The moon has an atmosphere 10 quadrillion times less dense than the Earth's — so weak, in fact, that statically charged moon dust levitates around 10 centimeters above the surface of the planet. Despite the fact that modern audiences know what the outcome of Scott's experiment is, the live broadcast remains a sight to behold and a historical treasure.

This article first appeared on Curiosity.com.

Next Up

How to Save Humanity from Extinction

Here are some goals we need to achieve if we want to reach our 500,000th birthday as a species.

Quiz: Test Your Space Exploration Knowledge

Ahead of the historic May 27th NASA and SpaceX crewed space launch, test your space exploration knowledge!

Extreme Weather Tests the Durability of Solar and Wind Power

As category four Hurricane Ian swept across the Caribbean into south west Florida on 28 September 2022, knocking out Cuba’s electricity grid along the way, hundreds of thousands of homes were hit by flooding and power loss. In contrast, the solar-powered community of Babcock Ranch 24 miles to the north of coastal town Fort Myers survived intact.

World's First Malaria Vaccine Offers Hope to Millions

Tens of thousands of lives could be saved each year from sickness and death caused by malaria following the World Health Organization (WHO) approval of a first-ever vaccine. Scientists have recommended the RTS,S vaccine for children in sub-Saharan Africa and other high-risk areas to prevent one of the world’s oldest and deadliest infectious diseases.

Farewell, Earth’s Mini-moon

It's time to say goodbye to the mini-moon that's no bigger than your car.

The Kuiper Belt: When Solar Systems Dance

Pluto isn't alone after all. Besides being the home of Pluto, the Kuiper belt hosts dwarf planets, and smaller bits of rock and ice.

Check Out the Crab Nebula –The Leftovers from a Giant Cosmic Firework

The Crab Nebula sits 6,500 light-years away, and is currently about 11 light-years across. But while it looks pretty from afar, don’t give in to the temptation to visit it up close.

The 2020 Planetary Primaries

What’s your favorite planet? Before you decide, here are some key facts about each of the candidates.

What are the Chances of Life Appearing On…Earth?

Just how lucky are we on Earth? What were the chances that life would arise, let alone lead to intelligence?

DNA's Building Blocks May Have Their Origins in Outer Space

One of life's building blocks could have originated in outer space. But if this experiment shows how these building blocks actually formed, how exactly did they get to Earth?