This montage of images taken by the Voyager spacecraft of the planets and four of Jupiter's moons is set against a false-color Rosette Nebula with Earth's moon in the foreground. Studying and mapping Jupiter, Saturn, Uranus, Neptune and many of their moons, Voyager provided better images and data than had ever been obtained by Earth-bound scientists. Data collection continues by both Voyager 1 and 2 as the renamed Voyager Interstellar Mission searches for the edge of the solar wind influence (the heliopause) and exits the solar system. A shortened list of the missions discoveries of Voyager 1 and 2 include: Uranian and Neptunian magnetospheres (magnetic environments caused by various types of planet cores); 22 new satellites including three at Jupiter, three at Saturn, 10 at Uranus, and six at Neptune; active volcanism on Io; active geyser-like structures and an atmosphere on Triton; Auroral Zones (where gases become excited after being hit by solar particles) on Jupiter, Saturn and Neptune; rings at Jupiter; and, large-scale storms on Neptune, originally thought to be too cold to support such atmospheric disturbances.

Photo by: NASA

NASA

It’s Not You, It’s Me: How a Planet Left Our Solar System

Sometimes you just know. Something clicks, you have a realization that this relationship isn’t right, and it’s simply time to go.

It can happen to anyone, at any time, even to planets, and even billions of years ago.

February 17, 2022

The solar system we have today isn’t the solar system we’ve had the whole time. Today, we have four rocky inner worlds (Mercury, Venus, Earth, and Mars), an asteroid belt, four gassy outer worlds (Jupiter, Saturn, Uranus, and Neptune), and then a ring of icy leftovers.

When astronomers use mathematical models to simulate the formation of our solar system, they find something interesting: the outer planets were once much, much farther away from the Sun. That’s because our Sun is so dang hot; its intense heat melts any ices and blows away any loose gasses in the inner regions of the solar system.

Flaring, active regions of our Sun are highlighted in this image combining observations from Nuclear Spectroscopic Telescope Array, or NuSTAR (shown in blue); low-energy X-rays from Japan's Hinode spacecraft are green; and extreme ultraviolet light from Solar Dynamics Observatory, or SDO, are yellow and red.

Photo by: NASA/JPL-Caltech/GSFC/JAXA

NASA/JPL-Caltech/GSFC/JAXA

Flaring, active regions of our Sun are highlighted in this image combining observations from Nuclear Spectroscopic Telescope Array, or NuSTAR (shown in blue); low-energy X-rays from Japan's Hinode spacecraft are green; and extreme ultraviolet light from Solar Dynamics Observatory, or SDO, are yellow and red.

If you’re trying to build a giant planet, you need lots and lots of ices and gasses, like hydrogen and helium. And there just isn’t that much of the stuff near the Sun, especially in its early days when it was much more temperamental than it is today.

So the giant planets need to form further out, where there’s a rich supply of materials that they can use to bulk up and get huge.

Now we have an interesting problem: how do the giant planets then migrate into their current positions?

One option is through a complicated dance involving the still-forming planets and the rich supplies of gas surrounding them in the young system. Through various interactions, the gas can slowly tug at the planets, pulling them closer to the Sun over the course of a few million years.

This artist's conception shows the relative size of a hypothetical brown dwarf-planetary system compared to our own solar system.

Photo by: NASA/JPL-Caltech/T. Pyle (SSC)

NASA/JPL-Caltech/T. Pyle (SSC)

This artist's conception shows the relative size of a hypothetical brown dwarf-planetary system compared to our own solar system.

Another, much more fun, possibility involves a fifth giant planet.

At first, this world would form just like its siblings, suckling on tremendous reserves of gas, plumping up to become a giant in its own right. But there isn’t enough room in the outer system for that many planets. They would tend to swing close together or have their orbits align too many times.

Eventually, after a hundred thousand years or so, things would go haywire. The planet would become unstable, its orbit varying radically. Eventually, it would get ejected out of the solar system altogether.

As for the remaining planets? Well, heaving a giant world out of the solar system requires a fair amount of energy, and somebody has to pay the price. The remaining planets, losing energy, would be forced to migrate closer to the Sun into their present-day positions.

But what about the fifth planet? It would be forced to roam the interstellar depths as a rogue planet for the rest of the days. It would be alone…but at least it would be free.

Dive Deeper into the Cosmos

Journey Through the Cosmos in an All-New Season of How the Universe Works

The new season premieres on Science Channel and streams on discovery+.

Paul M. Sutter

Paul M. Sutter is an astrophysicist at Stony Brook University and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of How to Die in Space.

Next Up

James Webb Space Telescope Successfully Reached Its Final Destination

Nearly a month after the James Webb Space Telescope launched from French Guiana on December 25, the telescope has reached its final destination–almost a million miles from Earth.

What Happens When the Sun Throws a Tantrum?

Sure, the sun looks all calm up there in the sky. Kids even put little smiley faces on the sun when they draw it. But look closer and you’ll find that our sun has a nasty, violent temper.

This Little Star Made a Blast Bigger Than Our Sun Ever Could

Small stars can pack a surprisingly powerful punch. For an example look no further than the nearest neighbor to our solar system, Proxima Centauri. This little red dwarf just sent off a blast a hundred times more powerful than anything that our own sun ever has.

There’s a Hole in Our Galaxy

Folks, we just found a 500-lightyear-wide hole in our galaxy. Fess up: which one of you did it?

How to Make a Neutron Star at Home

First, take a bunch of matter. It doesn’t matter what kind – a piece of paper, some leftover gum. Then, press it, and press it, and press it some more. Don’t stop now! We’ve got a long way to go.

Why NASA’s New Super-Telescope Can’t See Visible Light

Even though NASA’s latest flagship instrument, the James Webb Space Telescope, is touted as the successor to the venerable Hubble, it has one major difference.

What Happens When Stars Kiss (Hint: They Explode)

You know that feeling--They close their eyes, purse their lips, and lean in. So you go for it. You feel the spark, the magic, and the fire of that first kiss. It’s one of the best things in the Universe.Except, of course, if you’re a star.

Meet WASP-127b, the Fluffiest Planet in the Galaxy

Take a planet with the mass of, say, Saturn. You know, pretty big, but not ridiculously big. Just…normal big.

Why Charting the Most Extreme Objects in the Solar System Matters

So the astronomers called it “FarFarOut”, which is mostly a joke because the last time they found such a distant object it they nicknamed it “FarOut”, and this new world is much, much, farther out.

The Best Planets are Rogue Planets

We can debate the status of objects in the solar system all day long, arguing if little Pluto is a planet or not. But to tell you the truth, any planet in any solar system got the short end of the stick. The real winners of the galactic game are the travelers, the roamers, the rogue planets.

Related To: