Photo by: NASA/JPL-Caltech

NASA/JPL-Caltech

It’s Time to Return to the Land of the Ice Giants

30 years--It’s been over 30 years since the Voyager 2’s historic flyby of Uranus and Neptune, the outermost and most mysterious planets in the solar system. It’s time to go back.

April 01, 2021

Since 1989, we’ve sent multiple rovers to Mars, orbited Jupiter and Saturn, send flybys to Pluto (and beyond!), landed on the methane-shrouded moon of Titan, and even returned samples of asteroids and comets.

Meanwhile, the only close-up images we have of Uranus and Neptune come from a Generation X mission launched in 1977.

And time is running out. Voyager 2 only got to visit those two worlds (which sit 19 times and 30 times farther from the sun than the Earth, respectively) by taking advantage of Jupiter’s immense gravity, slingshotting the craft to a high enough speed to reach the outer system in a reasonable amount of time. That kind of solar system alignment isn’t common, and the next launch window will open in 2029…and close just five years later.

The Voyager spacecraft were built and continue to be operated by NASA's Jet Propulsion Laboratory, in Pasadena, Calif. Caltech manages JPL for NASA. The Voyager missions are a part of NASA's Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate at NASA Headquarters in Washington.

Photo by: NASA/JPL-Caltech

NASA/JPL-Caltech

The Voyager spacecraft were built and continue to be operated by NASA's Jet Propulsion Laboratory, in Pasadena, Calif. Caltech manages JPL for NASA. The Voyager missions are a part of NASA's Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate at NASA Headquarters in Washington.

To date, no mission to Uranus and Neptune has even made it out of the proposal stage. Even if a mission were accepted this year, it would be a race against the clock to get it to the launchpad in time.

Here’s the thing. Neptune and Uranus are downright strange. Uranus has the most extreme tilt of any planet, spinning at a nearly 90 degree angle with respect to the rest of the solar system. What the heck happened to it? And Neptune, despite being so much farther from the sun than any other planet, emits more than twice the amount of heat that it receives from the sun. What’s making it so warm?

We simply don’t know. And the more we dig into these planets, the weirder they get.

Uranus and Neptune are known as “ice giants”, because they’re made of mostly water, ammonia, and methane. Those elements are currently a hot liquid deep in their cores (essentially making those planets a giant, ultra-hot electrical conductor), but when the planets formed those elements may have been frozen into various kinds of ices.

Left: Arriving at Uranus in 1986, Voyager 2 observed a bluish orb with subtle features. A haze layer hid most of the planet's cloud features from view. Right: This image of Neptune was produced from Voyager 2 and shows the Great Dark Spot and its companion bright smudge.

Photo by: NASA/JPL-Caltech

NASA/JPL-Caltech

Left: Arriving at Uranus in 1986, Voyager 2 observed a bluish orb with subtle features. A haze layer hid most of the planet's cloud features from view. Right: This image of Neptune was produced from Voyager 2 and shows the Great Dark Spot and its companion bright smudge.

How did enough material come together in the outskirts of the solar system to form large planets like that? Simulations of solar system formation have a hard time explaining them, and our searches for planets outside the solar system suggest that Uranus- and Neptune-like planets may be rare.

We need to study the ice giants if we hope to answer any of these burning questions. One proposed mission, called Trident, has passed a preliminary review of proposals and is up for a final round of competition at NASA this spring. If it gets the greenlight, it may be able to take advantage of the Jupiter gravity assist and fly through the atmosphere of Triton, the largest moon of Neptune.

Global color mosaic of Triton, taken in 1989 by Voyager 2 during its flyby of the Neptune system.

Photo by: NASA/JPL/USGS

NASA/JPL/USGS

Global color mosaic of Triton, taken in 1989 by Voyager 2 during its flyby of the Neptune system.

Oh, I didn’t mention Triton? The moon has the coldest surface in the solar system, and its thick nitrogen ice shell may be hiding a subsurface, globe-spanning liquid water ocean.

Like I said, there are a lot of mysteries in the land of the ice giants.

Next Up

How Common are Water Worlds in the Galaxy?

If Kevin Costner wanted to make a sequel, he’s got plenty of opportunities. Water is by far the most common molecule in the universe. It’s made of two parts hydrogen and one part oxygen. Hydrogen is element number 1 (both on the period table and in abundance), and has been hanging around since the first 15 minutes of the Big Bang. Oxygen is forged in the hearts of sun-like stars, and spreads around when those stars die and turn themselves inside out. And since sun-like stars are also very popular, oxygen gets quite a boost.

Celebrate the I Heart Pluto Festival, An Ode to the Beloved Planet

Yes, we said "planet." Clyde Tombaugh discovered Pluto at Lowell Observatory in Flagstaff, Arizona during the month of February in 1930.Last year on the 90th Anniversary of the discovery, the observatory held its first I Heart Pluto Festival. This year you can be a part of the action.

Countdown to the Mars Rover Landing

The Mars 2020 Perseverance Rover and Mars Helicopter, Ingenuity, are closer to Mars than ever before as touch down at the Jezero crater is scheduled for February 18, 2021. Let’s take a look back at its launch and learn how it will land on the Red Planet.

Why Charting the Most Extreme Objects in the Solar System Matters

So the astronomers called it “FarFarOut”, which is mostly a joke because the last time they found such a distant object it they nicknamed it “FarOut”, and this new world is much, much, farther out.

Ingenuity Takes First Flight on Mars

In a historic first, Ingenuity successfully flew on the Red Planet. The Mars helicopter was in the air for about 40 seconds.

Meet Ingenuity: NASA’s First Mars Helicopter

Perseverance with Ingenuity strapped to its belly launched on July 30, 2020, from Cape Canaveral Air Force Station in Florida. The Mars Rover and Mars Helicopter safely landed on the dusty surface at 3:55P ET on February 18, 2021, after traveling nearly 292.5 million miles.

It’s Time to Say Goodbye to Arecibo

There aren’t a lot of telescopes that are also movie stars. In fact, I can think of only one: the famed Arecibo Observatory in Puerto Rico.

NASA’s Plan for Returning to the Moon

NASA is planning to land the first woman and next man on the moon in 2024. Through a US government-funded human spaceflight program known as Artemis, there may be human footprints on the south pole region of the lunar surface in the very near future. From understanding the Artemis Program to the Gateway, let’s explore the lunar details.

Expedition 63 to Return Home on October 21

After 196 days in space aboard the ISS, NASA astronaut Chris Cassidy, Roscosmos cosmonaut Anatoli Ivanishin, and Roscosmos cosmonaut Ivan Vagner are coming home! Let’s learn the details of their return to Earth.

SpaceX Crew Dragon Undocked and Ready to Return

NASA Astronauts Bob Behnken and Doug Hurley return to Earth somewhere in the ocean near Florida after just over two months at the International Space Station. The first step was completed today at around 7:30 P ET, with a successful undocking from ISS. Follow the journey on SPACE LAUNCH LIVE: SPLASHDOWN on Discovery on August 2 starting at 1P ET.
Related To: