Photo by: Shutterstock

Shutterstock

Empty Space Isn't Empty, And Quantum Researchers Now Have Direct Evidence

By: Ashley Hamer

In the quantum world, things aren't always what you expect them to be.

August 01, 2019

If there's one thing you need to know about the quantum world, it's that things aren't what you expect them to be. Nothing, for example. In classical physics, nothing is a space devoid of stuff. But according to quantum theory, nothing is chock-full of stuff. Scientists have had weak evidence of this nothing-stuff—or quantum vacuum fluctuations, if you want to get technical—since the 1940s, but new experiments may have given us direct proof of its existence. That could mean very, very big things for quantum research.

Photo by: Science Magazine

Science Magazine

A Churning Stew Of Nothingness

To get even more specific, classical physics defines nothing, or a vacuum, as a space devoid of matter in the lowest possible energy state. When you delve into the quantum realm, this definition poses a problem. You've probably heard of Heisenberg's uncertainty principle, even if you may not totally grasp it. In essence, it says that there's a limit to what we can know about quantum particles. Because everything in quantum mechanics is both a wave and a particle, if you know a particle's position you can't know its momentum, and vice versa. This boils down to the idea that the vacuum isn't really empty. It's actually churning with smatterings of particles that disappear and reappear at random, creating a fluctuating energy field.

Of course, that's just because Heisenberg says so. We've never had actual proof of this so-called energy field. In the 1940s, scientists found indirect evidence of it by examining the radiation emitted by hydrogen atoms and the forces exerted on closely spaced metal plates, but that was it. Then in 2015, a team of German scientists led by Alfred Leitenstorfer announced that they had directly detected that fluctuating energy field by firing a super-short laser pulse into a vacuum and seeing tiny changes in the polarization of the light. Those changes, they said, were caused by the fluctuations in the quantum vacuum. Still, since many things could potentially cause that fluctuation, that result was up for debate.

A Traffic Jam In Empty Space

Finally, in January 2017, Leitenstorfer and his team published what might be the smoking-gun evidence for quantum vacuum fluctuations. They again used a super-short laser pulse—specifically, a few femtoseconds long, which is half the size of a wavelength of light in the range they were studying—to generate what's known as "squeezed light," or light that has been slowed down in a certain segment of space-time. That squeezing, according to the press release, works sort of like a car causing a traffic jam: "from a certain point on, some cars are going slower. As a result, traffic congestion sets in behind these cars, while the traffic density will decrease in front of that point. That means: when fluctuation amplitudes decrease in one place, they increase in another."

But wait—that's not the best part. If these scientists actually found a way to detect particles without disturbing them, they may have unlocked a door that has been closed to scientists as long as quantum physics has existed. We've never been able to directly detect quantum particles before, and this new technique may be the way. Their findings need further verification, as all good science does, but if it's true, this could mean very big things.

This article first appeared on Curiosity.com.

Next Up

Celebrating Hubble's 30 Year Legacy

Three cheers for the Hubble! First launched in 1990 aboard the Space Shuttle Discovery, the storied space telescope is celebrating is thirtieth year in lonely orbit around the Earth.

Scientists Have Discovered Enormous Balloon-Like Structures in the Center of Our Galaxy

There's something really, really big in the middle of our Milky Way galaxy — one of the largest structures ever observed in the region, in fact.

Farewell, Earth’s Mini-moon

It's time to say goodbye to the mini-moon that's no bigger than your car.

Stuck at Home? What to See in the Night Sky this Month

In times of darkness and incertainty, opt for exploration of wonder in the skies.

Check Out the Crab Nebula –The Leftovers from a Giant Cosmic Firework

The Crab Nebula sits 6,500 light-years away, and is currently about 11 light-years across. But while it looks pretty from afar, don’t give in to the temptation to visit it up close.

Welcome to the Surface of Mars

Through the use of cutting-edge instruments, scientists finally have the opportunity to probe deep beneath the surface and ascertain exactly how the terrestrial planet formed.

What are the Chances of Life Appearing On…Earth?

Just how lucky are we on Earth? What were the chances that life would arise, let alone lead to intelligence?

4 Reasons Why Earth is the Best Planet to Call Home

Since 1970, folks from around the world have gathered together to celebrate Earth Day, an appreciation for all the good stuff we’ve got here on the Earth – and a reminder to try not to mess it up. But what’s so special about the Earth, anyway?

Following Blue Origin’s NS-12 Rocket Launch

Blue Origin, Billionaire Jeff Bezos’ spaceflight company, is rescheduled to launch its NS-12 reusable spacecraft on Wednesday, December 11. Watch it LIVE.

When Was There Life on Venus?

What we have is a cosmic whodunit. Venus, the second planet from the sun and considered by the more romantic types as "Earth's twin" and the avatar of love, is dead.