Photo by: Shutterstock

Shutterstock

Empty Space Isn't Empty, And Quantum Researchers Now Have Direct Evidence

By: Ashley Hamer

In the quantum world, things aren't always what you expect them to be.

August 01, 2019

If there's one thing you need to know about the quantum world, it's that things aren't what you expect them to be. Nothing, for example. In classical physics, nothing is a space devoid of stuff. But according to quantum theory, nothing is chock-full of stuff. Scientists have had weak evidence of this nothing-stuff—or quantum vacuum fluctuations, if you want to get technical—since the 1940s, but new experiments may have given us direct proof of its existence. That could mean very, very big things for quantum research.

Photo by: Science Magazine

Science Magazine

A Churning Stew Of Nothingness

To get even more specific, classical physics defines nothing, or a vacuum, as a space devoid of matter in the lowest possible energy state. When you delve into the quantum realm, this definition poses a problem. You've probably heard of Heisenberg's uncertainty principle, even if you may not totally grasp it. In essence, it says that there's a limit to what we can know about quantum particles. Because everything in quantum mechanics is both a wave and a particle, if you know a particle's position you can't know its momentum, and vice versa. This boils down to the idea that the vacuum isn't really empty. It's actually churning with smatterings of particles that disappear and reappear at random, creating a fluctuating energy field.

Of course, that's just because Heisenberg says so. We've never had actual proof of this so-called energy field. In the 1940s, scientists found indirect evidence of it by examining the radiation emitted by hydrogen atoms and the forces exerted on closely spaced metal plates, but that was it. Then in 2015, a team of German scientists led by Alfred Leitenstorfer announced that they had directly detected that fluctuating energy field by firing a super-short laser pulse into a vacuum and seeing tiny changes in the polarization of the light. Those changes, they said, were caused by the fluctuations in the quantum vacuum. Still, since many things could potentially cause that fluctuation, that result was up for debate.

A Traffic Jam In Empty Space

Finally, in January 2017, Leitenstorfer and his team published what might be the smoking-gun evidence for quantum vacuum fluctuations. They again used a super-short laser pulse—specifically, a few femtoseconds long, which is half the size of a wavelength of light in the range they were studying—to generate what's known as "squeezed light," or light that has been slowed down in a certain segment of space-time. That squeezing, according to the press release, works sort of like a car causing a traffic jam: "from a certain point on, some cars are going slower. As a result, traffic congestion sets in behind these cars, while the traffic density will decrease in front of that point. That means: when fluctuation amplitudes decrease in one place, they increase in another."

But wait—that's not the best part. If these scientists actually found a way to detect particles without disturbing them, they may have unlocked a door that has been closed to scientists as long as quantum physics has existed. We've never been able to directly detect quantum particles before, and this new technique may be the way. Their findings need further verification, as all good science does, but if it's true, this could mean very big things.

This article first appeared on Curiosity.com.

Next Up

The Perseid Meteor Shower Reaches its Peak

Stargazers rejoice! The annual Perseid meteor shower is upon us. Here's what you need to know...(updated August 11, 2022)

Scientists in China Discover Rare Moon Crystal that Could Power Earth

A rare lunar crystal found on the near side of the moon is giving scientists hope of providing limitless power for the world – forever.

How 3D Print Building is Changing the Future

Building with 3D printing technology is sparking widespread interest in the construction industry. Besides reducing waste and our impact on the environment, it can speed up construction from weeks, or months, to days. Projects that use simple raw materials like soil, straw, and even salt, can be built in a fraction of the time and cost of traditional construction.

Microplastics in Blood Spotlight Health Emergency from Plastic Pollution

Plastic pollution is growing rapidly across Earth’s ecosystems and its threat to humanity and wildlife is too. Outcomes for health and the environment will be dire unless we tackle it, says a United Nations (UN) report. But the discovery of microplastics in human blood means urgent action is needed.

113 Million-Year-Old Dinosaur Tracks Uncovered Due to Drought

Severe drought conditions dried up a river at Dinosaur Valley State Park in Texas leading to the pre-eminent discovery.

How to Save Humanity from Extinction

Here are some goals we need to achieve if we want to reach our 500,000th birthday as a species.

Can this New AI Technology Help Us Understand the Languages of Animals?

A California-based nonprofit is searching to build an AI language that allows humans more deeply understand non-human languages to help change our ecological impact on our Earth.

AI Tools Help to Predict Extreme Weather and Save Lives

Predicting extreme weather events is a tricky business. Changing climate conditions have increased the frequency of severe storms, floods, and heatwaves, along with larger wildfires. As a result, scientists are using artificial intelligence (AI) techniques for more accurate forecasts that help to minimize damage and save lives.

Saving Baby Elephants from a Deadly Herpes Virus

One biotechnology company is accelerating efforts to eradicate a fatal disease affecting endangered elephants.

All Rainwater is Unsafe to Drink According to Study

A study by Stockholm University and ETH Zurich scientists found that all rainwater on Earth is unsafe to drink due to the levels of PFAS, or toxic chemicals. These PFAS or ‘forever chemicals’ are becoming a part of a future reality that humans must, unfortunately, learn to live with.