908770276

Photo by: Issarapong Suya / EyeEm

Issarapong Suya / EyeEm

Artificial Limbs: Pioneering Animal Surgery May Hold the Key to Human Advances

By: Robin Fearon

An Irish vetrinary surgeon has called for closer cooperation between animal and human medics to develop more effective prosthetic technologies to benefit amputees.

January 26, 2021

Artificial limbs have become sophisticated pieces of medical technology. Muscle-sensing systems, smart skin that gives amputees back their sense of touch or pain, and motorized fingers that move when the wearer thinks about it, are incredible breakthroughs.

Revolutionary, Yet Potentially Difficult

Young amputee with a artificial leg, enjoying his time with his dog, a golden retriever.

1063867026

Young amputee with a artificial leg, enjoying his time with his dog, a golden retriever.

Photo by: FluxFactory

FluxFactory

Yet, prosthetics are not for everyone. There is no getting away from the low-tech physical strain of wearing them. Skin complaints, blisters and infections can develop where they are worn. Muscular strains, back pain and posture problems result from a less than ideal fit or from bodily imbalance.

In the US alone there are nearly 200,000 amputations each year, yet the cost of buying an artificial leg almost makes it a luxury purchase. They range from $5,000 for simpler mechanical and pneumatic models to more than $100,000 for a high-end bionic leg.

Animals Helping People

NOVOSIBIRSK, RUSSIA - JANUARY 17, 2020: Cat named Dymka in the veterinary clinic Best where it had a surgery to implant 3D printed bionic prosthetic legs; the cat lost its legs after an ice burn. Kirill Kukhmar/TASS (Photo by Kirill Kukhmar\TASS via Getty Images)

1194083181

NOVOSIBIRSK, RUSSIA - JANUARY 17, 2020: Cat named Dymka in the veterinary clinic Best where it had a surgery to implant 3D printed bionic prosthetic legs; the cat lost its legs after an ice burn. Kirill Kukhmar/TASS (Photo by Kirill Kukhmar\TASS via Getty Images)

Photo by: Kirill Kukhmar

Kirill Kukhmar

That is why an Irish vet surgeon has called for closer cooperation between animal and human medics to develop more effective prosthetic technologies. Noel Fitzpatrick is no ordinary veterinary surgeon. His practice in England where he performs cutting edge orthopedic surgery.

Fitzpatrick was the first surgeon in the world to fit twin prosthetics to a cat. Oscar, a black cat from Jersey, lost both of his back feet to combine harvester blades. He was fitted with two intraosseous transcutaneous amputation prosthesis (ITAP) developed by Professor Gordon Blunn and Dr Catherine Pendegrass at University College London.

ITAP was custom-made to fit into holes drilled directly into the leg bones. An exoprosthetic rod protruded out through the skin with a special honeycomb structure based on deer antler that allowed the skin to bond with the implant and prevent infection. Specially designed feet could then be attached and replaced when needed.

At the time, the procedure was revolutionary. Fitzpatrick gained worldwide recognition for his willingness to innovate in animal medicine. Design and manufacture updates led him to develop the PerFITS (percutaneous fixation to skeleton) amputation prosthesis with improved bone fusion and anti-bacterial properties.

Speaking in 2016, Fitzpatrick said, “We have the ability to make custom implants. We can print in three dimensions a mechanical and biological scaffold right now which you can’t use in a human.”

He decried the lack of attention given to animal prosthetic innovations. Cats and dogs are the perfect test bed for artificial limb technologies because they will test artificial limbs to their limits. In the process, the vet profession has learned a lot about what works from implants that fuse to the wearer's bone.

“This is dumb, there is not one person running in the Paralympics this year running on an osteo-integrated prosthesis and I guarantee you that will not be the case in 20-years-time,” he remarked.

ITAP was supposed to save on some of the costs associated with traditional prosthetics, such as replacing the sockets that fit over the residual limb, repeated fittings and treating infections and pressure sores. In the end ITAP was not developed to any extent in human medicine.

Fitzpatrick set up The Humanimal Trust to encourage collaboration and inter-species research between the veterinary and medical professions. Then in 2018, he signed a deal with the Royal National Orthopedic Hospital in London for his system to be used to create bionic limbs for humans.

Veterinary Innovations

NOVOSIBIRSK, RUSSIA - APRIL 13, 2017: An amputee cat called Ellis with prosthetic paws. The cat had titanium rods inserted into the bones of its hind legs. The titanium implants with a bioactive coating have been designed by Tomsk Polytechnic University for the clinic. Kirill Kukhmar/TASS (Photo by Kirill Kukhmar\TASS via Getty Images)

669759370

NOVOSIBIRSK, RUSSIA - APRIL 13, 2017: An amputee cat called Ellis with prosthetic paws. The cat had titanium rods inserted into the bones of its hind legs. The titanium implants with a bioactive coating have been designed by Tomsk Polytechnic University for the clinic. Kirill Kukhmar/TASS (Photo by Kirill Kukhmar\TASS via Getty Images)

Photo by: Kirill Kukhmar

Kirill Kukhmar

Veterinary medicine continues to innovate the exo-endo implant with a recent quadruple limb operation performed on a cat with severe frostbite in Siberia. Vet surgeon Sergei Gorshkov collaborated with researchers at the Tomsk Polytechnic University to create a set of prosthetics for the cat, Dymka.

Specially coated implants were fused into her leg bones and flexible feet attached to the ends. Each prosthetic limb was custom-made of 3D printed titanium and then covered in an antibacterial coating of microactive calcium phosphate

3D printed manufacture is the future of prosthetic development. It allows rapid prototyping and design in a variety of durable and lightweight materials including carbon composites and biocompatible materials for better sockets.

Designs can be printed anywhere there is a compatible printer. 3D body scanning and measurement technology allows medics to create a more satisfying experience for the wearer. Future technologies such as bionic propulsion and computer algorithms will help to create more natural movement.

Biomechanics and industrial design can help multiple species at the same time. Concepts like biomimicry are important here–taking the best 'designs' of evolution in the animal world and adapting them for human use–like a prosthetic leg for climbers modeled on a mountain goat's leg. Or actually creating a prosthetic for an injured dolphin or kangaroo.

Animal models have been the one technology that has advanced modern medicine more than any other and there is still huge scope to learn from animals in prosthetic design. Promoting 'one medicine' programs where veterinary and human researchers learn together can improve health technologies for all species.

Next Up

Blind Dogs Can Still Play Fetch. A Newfound Nose-to-Brain Connection Explains Why.

Why are dogs such great sniffers? A new canine connection shows powerful brain links between dogs’ sense of smell and sight.

Prince William Joins TED to Fight Climate Change

All day on Saturday, October 10, TED presents its first free virtual conference dedicated solely to the topic of global warming — 'Countdown.'

Inspiring Women in Science

Dr. Lisa Hoopes, Director of Research and Nutrition at Georgia Aquarium shares her experiences in the field and what International Women and Girls in Science Day means to her.

Can You Teach a Goldfish to Drive?

A new experiment suggests these household fish actually make good drivers.

A Dragonfly's Highly Evolved Flying Technique is Perfect for Drones

Dragonflies are nature’s most agile insect fliers and likely the most accomplished anywhere on Earth. Their ability to move in any direction at high speed or hover in one spot makes them the perfect model for robotic flight.

‘Bird Brain’ May Have Helped Birds Survive the Dinosaur Extinction

Recently, a fossil of an ancient bird skull was discovered, shedding light on how birds’ large brains may have helped them survive the dinosaur-killing asteroid.

Insect Feed Can Transform the Farming Industry

Feeding insects to farm animals could be the environmental revolution that the livestock industry has been waiting for. Insects, a rich source of protein and part of the natural diet for pigs, poultry, and fish, use a fraction of the land and water needed to raise soybeans for feed and produce lower carbon emissions.

244 Million-Year-Old Fossils Discovered in China

These are the oldest fossils of the extinct bony fish, Peltoperleidus, ever to be found, and the first time Peltoperleidus fossils have been found outside of Europe.

Facial Recognition for Grizzly Bears

New A.I. technology is allowing scientists to keep track of individual grizzlies over their lifetimes.

Can Birds Warn Us About Natural Disasters?

Researchers think birds can hear hurricanes and tsunamis coming. Scientists are hoping to capitalize on that sixth sense to develop an early detection system to save lives.