Aerial view of the solar power plant on the top of the mountain at sunset


Aerial view of the solar power plant on the top of the mountain at sunset

Photo by: zhihao


Solar-Powered Robots are the Sustainable Answer to a Cleaner, Connected Planet

By: Robin Fearon

Solar energy is virtually unlimited and one of the cleanest forms of renewable power. So building machines driven by the sun makes perfect environmental sense.

August 18, 2021

Solar-powered robots and drones are busy pushing technological boundaries in flight and space exploration, but they are also making light work of everything from farming to cleaning up the planet.

In communications and earth observation, high-altitude solar drones do the work of satellites without the high cost of space launches. Autonomous unmanned aerial vehicles (UAVs) powered by solar panels during daylight and batteries at night, may be airborne for months or even years at a time.

Google’s Project Skybender is using thousands of solar-powered drones, each with a wingspan up to 160 feet (50 meters) to deliver gigabits-per-second 5G networks. And solar drone technology is being pushed to new limits with the PHASA-35 UAV, designed to fly for up to a year at altitudes above 55,000 feet.

Higher still are the solar-powered moon rovers slated by NASA to help find water on the lunar surface. When they get there, MoonRanger and its smaller mission buddy CubeRover will provide support to astronauts, carrying out missions including exploring for ice and transporting cargo.

ATACAMA DESERT, CHILE - 2005: Engineers from Carnegie Mellon University developed this robot rover, named Zoe, to detect life on seemingly lifeless environments. Zoe features a cutting-edge system for identifying organic molecules that may one day help find life on Mars, and it is 20 times as fast as the Mars rovers Spirit and Opportunity. (Photo by John B. Carnett/Bonnier Corporation via Getty Images)


Engineers from Carnegie Mellon University developed this robot rover using solar energy, named Zoe, to detect life on seemingly lifeless environments.

Photo by: John B. Carnett

John B. Carnett

Engineers from Carnegie Mellon University developed this robot rover using solar energy, named Zoe, to detect life on seemingly lifeless environments.

Meanwhile, robotic explorers equipped with solar panels are mapping the Earth’s oceans. Saildrone has launched a fleet of autonomous boats using the sun to power sensors that measure weather conditions, water chemistry, carbon dioxide levels, and marine life.

Three drones departed New Zealand in January 2019 to make the first ever autonomous circumnavigation of Antarctica, collecting critical climate data along the way. The saildrone Surveyor followed this in January 2021, equipped with sonar to map the seafloor at depths up to 23,000 feet (7,000 meters).

Autonomous ships are part of a new wave of future exploration vehicles. Vessels equipped as standard with a range of sensors, sophisticated guidance software and powered by renewable energy. Among them is the Mayflower autonomous ship, piloted by an AI captain; it will celebrate the Pilgrims' journey from England to America in 1620 and measure the ocean's health.

But it's not all about history-making or boundary-pushing. Sometimes doing the simple, but urgent tasks is just as important. Razer, for example, is an AI-guided surface drone programed to clean up plastic trash from the sea and collect data about pollution.

Asian engineer working on checking equipment in solar power plant, Pure energy, Renewable energy


Engineer checking equipment at a solar power plant.

Photo by: Pramote Polyamate

Pramote Polyamate

Engineer checking equipment at a solar power plant.

Even cleaning has a dirty side, it seems, as every year hundreds of Indian sewer workers are killed by poisonous gases while cleaning and removing blockages. Gujarati civic leaders vowed to stop this senseless loss of life by deploying a solar-powered robotic scavenging machine to clear sewers–armed with a gas sensor and video cameras, it can even separate out plastic particles, say its makers.

Anyone looking for a more wholesome use of solar energy should look instead to farming robots. Menial tasks like cutting grass and weed removal are being automated, in the form of the University of Sydney’s eco-friendly RIPPA, to speed up productivity.

RIPPA measures soil moisture and temperature, identifies weeds using a high-speed camera, and delivers highly targeted doses of weed killer and pesticide.

Ladybird is another of the university’s solar-driven robots, designed to maximize crop outputs using lasers, video and hyper-spectral cameras. All-wheel steering is less disruptive to the tilled soil and allows the robot to compensate for unevenly planted rows. Ladybird maps each farm, classifies crops and finds problems.

On its first outing to a farm growing beetroot, onions and spinach, Ladybird operated for three days on one battery charge. Just like any other industry, there are environmental issues on farms and the solar-powered robot could help unlock sustainable cultivation to make food more eco-friendly.

Next Up

Robots Imitate Life to Create Better Versions of Themselves

Robots have always imitated life. Social androids powered by artificial intelligence have now reached a level where they may be ready to work in shops, airports, and care homes. But an entirely new class of robots is being developed that can grow, evolve, and even reproduce.

These Scientists Created Robots Covered in Living Skin

Japanese scientists created a self-healing skin for robots. This breakthrough study brings Westworld-like robots one step closer to reality.Is a dystopian future closer than we think?

Supercomputers and Artificial Intelligence Create Future Green Industries

Supercomputers and artificial intelligence (AI) are indispensable tools for cooking up the next generation of advanced materials. Advanced computers allow scientists to rapidly design better alloys, chemical catalysts, and plastics using millions of potential candidates. Tomorrow’s high-tech materials are being road-tested this way to cut down human trial and error.

How 3D Print Building is Changing the Future

Building with 3D printing technology is sparking widespread interest in the construction industry. Besides reducing waste and our impact on the environment, it can speed up construction from weeks, or months, to days. Projects that use simple raw materials like soil, straw, and even salt, can be built in a fraction of the time and cost of traditional construction.

Green Hydrogen Will Fuel the World’s Zero-Carbon Industries

One of the challenges in establishing a zero-emission green hydrogen network in the US is stabilizing supply and storage. Hydrogen (H2) is a carbon-free fuel and an $8 billion ‘H2 Hubs’ program from the Department of Energy aims to ramp up production. But keeping the industry environmentally neutral is difficult.

Drone Images of Coastal Kelp Show Recovery is Possible

California’s coastal kelp forests could be making a welcome revival. Drone images show seaweed beds recovering along the north coast in Mendocino and Sonoma counties.

Neuroprosthetic Sensory Devices are Reconnecting People to the World

Sensory loss has a profound effect on millions of people’s everyday lives. Sight, hearing, touch, smell, and taste can all be affected, diminishing their experience of the world. But now, thanks to neuroprosthetic technology we can tap into nerve and brain function, and rewire these lost connections.

Food Growers Use AI and Robotics to Tackle Pest Problem

Farmers around the world face serious challenges in growing food more effectively. Climate warming increases the risk of crop damage from insects, fungi, and bacteria. So to manage the threat farms are turning to artificial intelligence (AI), robotics, and computer vision to target pests more effectively.

Plucking CO2 from the Air Could Decarbonize Food, Fuel, and Fashion

Products made from carbon dioxide (CO2) captured from the atmosphere are part of a fast-growing trend to decarbonize nearly everything we use. Food, drink, fuel, and plastics can all be made using CO2 from the air. And recycling carbon could create a circular economy that vastly reduces pollution and waste.

Extreme Weather Tests the Durability of Solar and Wind Power

As category four Hurricane Ian swept across the Caribbean into south west Florida on 28 September 2022, knocking out Cuba’s electricity grid along the way, hundreds of thousands of homes were hit by flooding and power loss. In contrast, the solar-powered community of Babcock Ranch 24 miles to the north of coastal town Fort Myers survived intact.