This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole’s event horizon, where no light can escape the massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and smeared as the stars skim by the black hole.

Behemoth Black Hole Found in an Unlikely Place

This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole’s event horizon, where no light can escape the massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and smeared as the stars skim by the black hole.

Photo by: NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI)

NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI)

The Death of Black Holes

According to NASA, "A black hole is a place in space where gravity pulls so much that even light can not get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying." But what happens when a black hole dies?

October 30, 2020

I need to let you in on a little secret. You know black holes, right? Those regions of such extreme gravity that nothing can ever escape? That once you fall in you can never get out? One of the most enigmatic places in the entire universe?

Yeah, those black holes. It turns out that they're not quite entirely, wholly, 100%...well, black.

Here's the thing. We understand black holes through Einstein's theory of general relativity. That theory teaches us that if enough matter crunches down into a small enough volume then it will form a black hole. For example, you could squeeze the Earth down to about the size of a lima bean (although you're free to imagine the bean of your choice) it would become a bean-sized black hole. If we scrunched you down to about the size of an atom, you would be an atom-sized black hole.

The Existence

This is an illustration of a supermassive black hole, weighing as much as 21 million suns, located in the middle of the ultradense galaxy M60-UCD1. The dwarf galaxy is so dense that millions of stars fill the sky as seen by an imaginary visitor. Because no light can escape from the black hole, it appears simply in silhouette against the starry background.

Hubble Helps Find Smallest Known Galaxy Containing a Supermassive Black Hole

This is an illustration of a supermassive black hole, weighing as much as 21 million suns, located in the middle of the ultradense galaxy M60-UCD1. The dwarf galaxy is so dense that millions of stars fill the sky as seen by an imaginary visitor. Because no light can escape from the black hole, it appears simply in silhouette against the starry background.

Photo by: NASA Goddard

NASA Goddard

This is an illustration of a supermassive black hole, weighing as much as 21 million suns, located in the middle of the ultradense galaxy M60-UCD1. The dwarf galaxy is so dense that millions of stars fill the sky as seen by an imaginary visitor. Because no light can escape from the black hole, it appears simply in silhouette against the starry background.

According to general relativity, black holes just... exist. They form, and then anything that falls in gets trapped forever and that's about the end of the story.

But back in the 1970s, astrophysicist Stephen Hawking discovered something remarkable. Through a strange and not yet completely understood interaction between the boundary of a black hole — known as the event horizon — and the quantum fields that make up reality, black holes can slowly evaporate.

So they're not entirely black. They do give off a little bit of energy, which causes them to lose mass. It’s not much since a typical black hole will emit only one particle every year, but it’s not nothing. Over time they shrink down to nothing and simply pop away in a flash of energy.

It's not exactly fast. A good size black holesay, a few times more massive than the sun — will take about 10^100 years to eventually evaporate through this process, known as Hawking Radiation.

Considering that the universe is only 13.8 billion years old right now, we've got to wait just a little bit before black holes go away.

But go away they will. In the far far far far far future, after every star has lived and died, after every planet has dissolved, and after every galaxy has torn itself apart, the only thing remaining in the universe will be the black holes. And eventually those too will go out, leaving behind a shower of subatomic particles to aimlessly float through an empty and desolate cosmos.

I know it sounds depressing, but like I said, we've got a little bit of time before that happens.

Next Up

Asteroid Ryugu Has Dust Grains Older Than the Sun. How?

In 2018 the Japanese space agency sent the Hayabusa2 mission to the asteroid Ryugu, As a part of that mission, the spacecraft blasted material off the surface of the asteroid, put it in a bottle, and sent it back to Earth. Two years later that sample landed in the western deserts of Australia.

Why We Know Nothing about Dark Matter and Dark Energy

Welcome to the era of precision cosmology…where we’ve managed to very precisely measure everything we don't know about the universe.

How to Save Humanity from Extinction

Here are some goals we need to achieve if we want to reach our 500,000th birthday as a species.

Quiz: Test Your Space Exploration Knowledge

Ahead of the historic May 27th NASA and SpaceX crewed space launch, test your space exploration knowledge!

A Guide to Defending the Earth

Let’s say one day astronomers announce that our worst nightmare has come true: a large object is headed towards the Earth with a significant chance of impact. What do we do?

NFL SUPER STADIUMS Follows the Epic Journey of Building SoFi Stadium

In partnership with the NFL, Discovery and Science Channel go behind the scenes and follow the remarkable journey of constructing SoFi Stadium in an all-new, two-hour special, NFL SUPER STADIUMS premiering Wednesday, September 9 at 8P on Science Channel and Saturday, September 12 at 11A on Discovery.

Curiosity Daily Podcast: Hacking Device, Designer Seaweed, Accent Exposure

We discuss the latest in phone hacking technology, how aquaculture may be able to help the global food crisis, and how engaging with people who speak in a foreign accent may help us retain language.

Curiosity Daily Podcast:The Myth of Man Flu, Arctic Lakes, Buzzing Bats

Let’s talk about whether “man flu” is fact or fiction, how the Arctic lakes just threw a curveball at our climate change projections, and the genius new way bats are tricking their predators.

Curiosity Daily Podcast: Pee and Seagrass, Heart Sound Maps, Modified Mosquitos

Today we talk about how crystallizing human urine can help save seagrass, a new AI program that can detect early signs of heart disease, and how mosquitos can be used to vaccinate against malaria.

Extreme Weather Tests the Durability of Solar and Wind Power

As category four Hurricane Ian swept across the Caribbean into south west Florida on 28 September 2022, knocking out Cuba’s electricity grid along the way, hundreds of thousands of homes were hit by flooding and power loss. In contrast, the solar-powered community of Babcock Ranch 24 miles to the north of coastal town Fort Myers survived intact.

Related To: