What will be the next star in our Milky Way galaxy to explode as a supernova? Astronomers aren't certain, but one candidate is in Eta Carinae, a volatile system containing two massive stars that closely orbit each other. This image has three types of light: optical data from Hubble (appearing as white), ultraviolet (cyan) from Hubble, and X-rays from Chandra (appearing as purple emission). The previous eruptions of this star have resulted in a ring of hot, X-ray emitting gas about 2.3 light years in diameter surrounding these two stars.

What will be the next star in our Milky Way galaxy to explode as a supernova? Astronomers aren't certain, but one candidate is in Eta Carinae, a volatile system containing two massive stars that closely orbit each other. This image has three types of light: optical data from Hubble (appearing as white), ultraviolet (cyan) from Hubble, and X-rays from Chandra (appearing as purple emission). The previous eruptions of this star have resulted in a ring of hot, X-ray emitting gas about 2.3 light years in diameter surrounding these two stars.

Photo by: NASA/CXC

NASA/CXC

What Happens When Stars Kiss (Hint: They Explode)

You know that feeling--They close their eyes, purse their lips, and lean in. So you go for it. You feel the spark, the magic, and the fire of that first kiss. It’s one of the best things in the Universe.

Except, of course, if you’re a star.

February 14, 2022

When stars kiss, it never goes well. In fact, it always ends in a total cataclysm.

At the mildest end of the spectrum – and I’m saying this purely in relative terms – are the novae. This is what happens when you have a white dwarf, which is a compact remnant core of a star made of carbon and oxygen, kiss a red giant. If the red giant gets too close, then some of its outer atmospheres will get pulled onto the white dwarf. There it will start to pool, increasing in density and pressure.

The universe emits light or energy in many different forms. This object is, in fact, a pair: a white dwarf star that steadily burns at a relatively cool temperature and a highly variable red giant. As they orbit each other, the white dwarf pulls material from the red giant onto its surface. Over time, enough of this material accumulates and triggers an explosion. Astronomers have seen such outbursts over recent decades. Evidence for much older outbursts is seen in the spectacular structures observed by NASA's Hubble Space Telescope (red and blue). X-ray data from Chandra (purple) shows how a jet from the white dwarf is striking material surrounding it and creating shock waves, similar to sonic booms from supersonic planes.

Symbiotic star R Aquari

The universe emits light or energy in many different forms. This object is, in fact, a pair: a white dwarf star that steadily burns at a relatively cool temperature and a highly variable red giant. As they orbit each other, the white dwarf pulls material from the red giant onto its surface. Over time, enough of this material accumulates and triggers an explosion. Astronomers have seen such outbursts over recent decades. Evidence for much older outbursts is seen in the spectacular structures observed by NASA's Hubble Space Telescope (red and blue). X-ray data from Chandra (purple) shows how a jet from the white dwarf is striking material surrounding it and creating shock waves, similar to sonic booms from supersonic planes.

Photo by: NASA/CXC/SAO

NASA/CXC/SAO

The universe emits light or energy in many different forms. This object is, in fact, a pair: a white dwarf star that steadily burns at a relatively cool temperature and a highly variable red giant. As they orbit each other, the white dwarf pulls material from the red giant onto its surface. Over time, enough of this material accumulates and triggers an explosion. Astronomers have seen such outbursts over recent decades. Evidence for much older outbursts is seen in the spectacular structures observed by NASA's Hubble Space Telescope (red and blue). X-ray data from Chandra (purple) shows how a jet from the white dwarf is striking material surrounding it and creating shock waves, similar to sonic booms from supersonic planes.

If things get too hot and heavy, the gas on the surface of the white dwarf will spontaneously ignite in a flash of nuclear reactions, releasing a massive explosion of light and energy.

The good news is that both stars typically survive the event. The bad news is that it’s bound to happen again in a few decades.

But if too much material piles up on the white dwarf, it’s a goner. As the gas piles higher and higher, it can reach a critical threshold where the entire white dwarf star (for lack of a better term) cracks under the pressure. The entire mass of carbon and oxygen, which typically weighs more than our entire sun, ignites in a single nuclear accident.

This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the Sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its centre. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thousand years, the gas will fade away into the depths of the Universe. The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Serge Meunier.

Waving goodbye

The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf.

Photo by: ESA/Hubble & NASA

ESA/Hubble & NASA

The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf.

Naturally, this obliterates the white dwarf, and also usually the red giant along with it. This appears to us as a supernova, an outburst of light so bright that if it were to happen in our own galaxy, it would outshine an entire full Moon.

There are other ways for stellar embraces to go wrong. Neutron stars are like souped-up versions of white dwarfs, and occasionally they form in pairs. When they collide they release a flood of energy…and turn themselves into a black hole in the process.
Speaking of black holes, nobody wants to kiss those. The gravity near them is so strong that it can rip apart entire stars. Astronomers give this process a very boring-sounding name: tidal disruption events. But to give you a better picture, imagine being torn apart limb by limb. Now imagine that happening to an entire star. Yikes.

Dive Deeper into the Cosmos

Journey Through the Cosmos in an All-New Season of How the Universe Works

The new season premieres on Science Channel and streams on discovery+.

Paul M. Sutter is an astrophysicist at Stony Brook University and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of How to Die in Space.

Next Up

Quiz: Test Your Space Exploration Knowledge

Ahead of the historic May 27th NASA and SpaceX crewed space launch, test your space exploration knowledge!

How to Make a Neutron Star at Home

First, take a bunch of matter. It doesn’t matter what kind – a piece of paper, some leftover gum. Then, press it, and press it, and press it some more. Don’t stop now! We’ve got a long way to go.

Why NASA’s New Super-Telescope Can’t See Visible Light

Even though NASA’s latest flagship instrument, the James Webb Space Telescope, is touted as the successor to the venerable Hubble, it has one major difference.

There’s a Hole in Our Galaxy

Folks, we just found a 500-lightyear-wide hole in our galaxy. Fess up: which one of you did it?

You Love Supernova, So How About Micronova?

In space, even the smallest explosions are insanely powerful. Take for instance the newly discovered “micronova,” which sounds cute and cuddly and not at all deadly…except for the fact that it’s the explosive equivalent of a nuclear bomb a million times bigger than Mount Everest.

The Perseid Meteor Shower Reaches its Peak

Stargazers rejoice! The annual Perseid meteor shower is upon us. Here's what you need to know...(updated August 11, 2022)

What We’ve Already Learned From James Webb? (Hint: it’s a lot)

That was worth the wait. Just a quick handful of months since its historic launch on Christmas Day, the James Webb Space Telescope has flown to its observing position, unfolded its delicate instruments and ultra-sized mirror, and run through a suite of checks and alignments and calibrations. The team at NASA behind the telescopes released their first batch of images from the science runs, and besides being gorgeous, they're powerful.

How Astronomers Use a Trick of Gravity to See the Most Distant Objects in the Universe

Let’s say you’re an astronomer (work with me here) and you want to take a picture of something incredibly, deeply far away. You know, the typical business of astronomy.

Why Astronomers Care About Super-Old Galaxies?

A long time ago, our universe was dark.It was just 380,000 years after the big bang. Up until that age, our entire observable cosmos was less than a millionth of its present size. All the material in the universe was compressed into that tiny volume, forcing it to heat up and become a plasma. But as the universe expanded and cooled, eventually the plasma changed into a neutral gas as the first atoms formed.

How Do We Know How Old the Sun Is?

Scientists estimate that our Sun is about 4.57 billion years old. They’re surprisingly confident about that number, too, which opens up an immediate question: how do we know that? The short answer is “a lot of science and math”, but I have a feeling you’re not here for the short answer.

Related To: