Heatwave hot sun. Global warming from the sun and burning. Climate Change.

1173596095

Heatwave hot sun. Global warming from the sun and burning. Climate Change.

Photo by: Rapeepong Puttakumwong

Rapeepong Puttakumwong

This Is How Our Sun Will Die

Every star you see in the sky, including the sun, will someday die. It’s best to get used to that idea now, before things start to get heavy.

September 10, 2020

Thankfully, we’ve got a little bit of time.

Our sun currently powers itself through the fusion of hydrogen into helium in its core. This is generally a good thing, since that fusion process provides all the heat and light and warmth that we have come to enjoy on our little watery rock, 93 million miles away.

But just like ignoring the little red “E” on your gas gauge and getting stuck on your commute to work, eventually the sun will run out of fuel. There will still be plenty of hydrogen in the sun, mind you, but it won’t be down in the core where it can be put to any good use.

With no source of energy to counteract the tireless inward pull of gravity (the same pull of gravity that constantly keeps your feet planted to the ground), the sun will contract. As it contracts, the temperatures and pressures in the core continue to climb (because what else would they do) until they reach a critical point: the point at which helium itself can fuse into carbon and oxygen, again releasing energy and returning the sun to its former glory. Almost.

At this point the core of our sun has a temperature of around 100 million Kelvin. Did I mention that?

Step by Step Process, Sort Of

Image of the Sun, constructed from a mosaic of TRACE images.

534929574

Image of the Sun, constructed from a mosaic of TRACE images.

Photo by: NASA/Bryan Allen

NASA/Bryan Allen

With a core that intense, blazing out radiation like crazy, the outer layers of the sun (made up of all that unused hydrogen and other random elements) bloat up and stretch out. The distended solar atmosphere swells to over 200 times its current radius, bringing the surface of the sun within spitting distance of the Earth. Scorching, insane spitting distance.

But then the helium runs out. The sun collapses. Then it reignites. The sun enlarges. Then it collapses. Then it reignites. Then it enlarges. And so on and so on, a gruesome dance as the sun tears itself apart.

With each new cycle, some parts of the sun’s atmosphere detach completely, billowing out into the solar system, like tattered sails riding on winds of super-heated particles. Eventually, all that will be left is a core of leftover carbon and oxygen–the sun doesn’t have enough gravitational heft to fuse anything heavier. Surrounding that core (now more properly known as a white dwarf, because it’s literally white-hot and relatively small as astronomical objects go) is the leftover guts of our sun, spread throughout the now-defunct solar system.

The intense radiation from the newly-unveiled core (we’re talking X-rays here) rip through those guts, igniting them and enlightening them, causing them to release radiation of their own. The physics word to describe this process is fluorescence, and it’s the exact same physics behind fluorescent light bulbs.

But this is a bit bigger. Visible from light-years away, these planetary nebulae are the swansong of a sun-like star. A beautiful, unique, effervescent illuminated masterpiece, lasting a mere 10,000 years before dimming into the quiet void of interstellar space.

The End

Taken on september 14, 1999. Prominences are clouds of relatively cool dense plasma suspended in the sun's thin corona.

200358337-001

Taken on september 14, 1999. Prominences are clouds of relatively cool dense plasma suspended in the sun's thin corona.

Photo by: Stocktrek

Stocktrek

All stars around the mass of the sun will experience this ultimate fate, including, of course, the sun.

But this process won’t begin to unfold for another 5 billion years. Like I said, we’ve got a little bit of time.

Paul M. Sutter

Paul M. Sutter is an astrophysicist at Stony Brook University and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of How to Die in Space.

Next Up

Asteroid Ryugu Has Dust Grains Older Than the Sun. How?

In 2018 the Japanese space agency sent the Hayabusa2 mission to the asteroid Ryugu, As a part of that mission, the spacecraft blasted material off the surface of the asteroid, put it in a bottle, and sent it back to Earth. Two years later that sample landed in the western deserts of Australia.

Jupiter Makes Its Closest Approach to Earth in Nearly 60 Years

The last time Jupiter appeared this large and bright in the sky was in October 1963.

Six Planets are Retrograde, What Does that Mean for You?

Spoiler alert: It's an optical illusion.

Why We Know Nothing about Dark Matter and Dark Energy

Welcome to the era of precision cosmology…where we’ve managed to very precisely measure everything we don't know about the universe.

What We Learn from the Lunar Surface

Sure, the Moon is cool to look at, and fun to think about it. And it literally affects us here on the Earth: without the Moon, we’d be missing half our tides, and likely our planet’s rotation wouldn’t be as stable as it is.

What Comes After the Moon and Mars?

Space hotels may be in our future.

Watch NASA's Asteroid-Crashing DART Mission Make Impact

NASA sent a spacecraft on a mission to crash into an asteroid, so how did it go?Updated 9/26/22

Want to Name a Planet? Now’s Your Chance

Read on to learn about this rare opportunity to name a distant world observed by the James Webb Telescope.

What Screaming Black Holes are Telling Us

In 2002, NASA’s orbiting X-ray observatory, the Chandra telescope, mapped out the movements of hot gas in a cluster of galaxies sitting 250 million light-years away.

When We’ll Know if NASA’s Asteroid Impact Test was a Success

Recently NASA’s DART mission succeeded in its primary goal, which was to slam a spacecraft face-first into an asteroid. For science. The intention of the mission was to test if we could actually redirect an asteroid and send it into a different orbit. But how and when will we know if it worked?

Related To: